Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(25): 251302, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029450

RESUMO

We search for a first-order phase transition gravitational wave signal in 45 pulsars from the NANOGrav 12.5-year dataset. We find that the data can be modeled in terms of a strong first order phase transition taking place at temperatures below the electroweak scale. However, we do not observe any strong preference for a phase-transition interpretation of the signal over the standard astrophysical interpretation in terms of supermassive black hole mergers; but we expect to gain additional discriminating power with future datasets, improving the signal to noise ratio and extending the sensitivity window to lower frequencies. An interesting open question is how well gravitational wave observatories could separate such signals.

2.
Science ; 340(6131): 448, 1233232, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23620056

RESUMO

Many physically motivated extensions to general relativity (GR) predict substantial deviations in the properties of spacetime surrounding massive neutron stars. We report the measurement of a 2.01 ± 0.04 solar mass (M⊙) pulsar in a 2.46-hour orbit with a 0.172 ± 0.003 M⊙ white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detectors. Additionally, the system strengthens recent constraints on the properties of dense matter and provides insight to binary stellar astrophysics and pulsar recycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...